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Abstract

On afoliated Riemannian manifold with a transverse spin structure, we give a lower bound for the
square of the eigenvalues of the basic Dirac operator by the smallest eigenvalue of the basic Yamabe
operator. We prove, in the limiting case, that the foliation is minimal, transversally Einsteinian with
constant transversal scalar curvature. In particular, if the codimensighioff = 3,4,7 and 8,
thenFis transversally isometric to the action of discrete subgroup(gj @cting on theg-sphere.
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1. Introduction

The first estimate for the eigenvalue®f the basic Dirac operatdpy, restricted to the
space of basic sections of a foliated spinor bundle on the foliated Riemannian manifold
(M, gy, F) with a transverse spin structure was obtained by J&hdNamely, by using a

f
modified connectiorv defined by
P
Vx¥ = Vx¥ + fr(X) - ¥ (1.1)
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one proved that the following inequality

2 9 v 2
AS > TP 1)Inf(o + |k|%) (1.2)

holds, wherey = codimF, ¢V is the transversal scalar curvature aritie mean curvature
form of F. In the limiting case, the foliation is minimal, transversally Einsteinian with
constant transversal scalar curvature. The inequdli) corresponds to those of Friedrich
[4] and Hijazi[6].

In this paper, we give new lower bound for the eigenvalueByby the smallest eigen-
value of the basic Yamabe operai@y; which is defined by

—1
Yo =41~ Ag 40V, (1.3)
q—2

whereAg is a basic Laplacian acting on basic functions. The main idea used in this paper
comes from Hijazi's papd6]. This paper is organized as follows. $®ction 2 we review
the known facts on the foliated Riemannian manifold Section 3 we study the basic
properties of the transversal Dirac operators of transversally conformally related metrics.
In Section 4 we estimate the conformal lower bound for the eigenvalues of the basic Dirac
operator. LetM, g, F) be acompact Riemannian manifold with a transverse spin foliation
F of codimensiory > 3 and bundle-like metrigy, such thak e Qé(]—‘) andsk = 0. Then
2 q ; 2
AT = Aq—1) (11 + inflk]9), (1.4)

whereu1 is the smallest eigenvalue &f. This inequality is a specialization of the Hijazi
inequality[6] to the case of Riemannian foliations. $®ction 5 we prove, in the limiting
case thatF is minimal, transversally Einsteinian with positive constant transversal scalar
curvature and there are no non-trivial parallel basierms(r # 0, g) on M. Moreover, by
the generalized Lichnerowicz and Obata theorem for foliatja@F we prove that in case
of g = 3,4, 7 and 8,Fis transversally isometric to the space of orbits a discrete subgroup
of O(g) acting on the standargtsphere (sef’] for ordinary manifold).

Many steps and notations in this paper are similar to tho$&, ¢f. But we should take
care of the equations containing the mean curvature foofnF.

Throughout this paper, we consider the bundle-like metgjcfor (M, F) such that the
mean curvature formis basic and harmonic. The existence of the bundle-like megjyifor
(M, F) such thak is basic, i.e.x € Qé(]—‘), is proved in3]. In [13,14] for any bundle-like
metricgy with k € Qé(}'), it is proved that there exists another bundle-like mekjjcfor
which the mean curvature forfis basic-harmonic.

2. Preliminaries and known facts

Let (M, gy, F) be a(p + g)-dimensional Riemannian manifold with a foliaticf of
codimensiory and bundle-like metrig,, with respect taF.
We recall the exact sequence

0—>L—>TM1>Q—>0
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determined by the tangent bundl@nd the normal bundl@ = TM/L of F. The assumption
of gy to be a bundle-like metric means that the induced mefgion the normal bundle
Q = L' satisfies the holonomy invariance conditis;rgQ = 0, whereV® is the Bott
connection inQ.

For a distinguished chati c M the leaves ofF in U are given as the fibers of a
Riemannian submersiofi : &/ — V C N onto an open subse&tof a model Riemannian
manifold N.

For overlapping chart#/, N Ug, the corresponding local transition functiopg =
fu o fgl on N are isometries. Further, we denote YBythe canonical connection of the
normal bundleQ of F. Itis defined by

Vxs =n([X.Y;]) forXelL,  Vxs=n(V¥y,) forXeL", (2.1)

wheres € I'Q andY; e I'L* corresponding teunder the canonical isomorphisgn= L.
The connectiorV is metric and torsion free. It corresponds to the Riemannian connection
of the model spac# [9]. The curvatureRY of V is defined by

RY(X,Y) = VxVy — VyVx — V[xy] forX,Y e TM.

Sincei(X)RY = 0 for any X e I'L [9], we can define the (transversal) Ricci curvature
pY 1 I'Q — I'Q and the (transversal) scalar curvatareof F by

PV ()= RV, EEs, 0" =) go(p"(Ea), Ed),

where{E,},—1,... 4 iS an orthonormal basis @. F is said to be (transversallfinsteinian
if the model space/ is Einsteinian, that is,

1
oY = ;Iov -id (2.2)

with constant transversal scalar curvatate
Thesecond fundamental forof « of Fis given by

a(X,Y) =n(V¥Y) forX,Y erlL. (2.3)

It is trivial that« is Q-valued, bilinear and symmetric.
Themean curvature vector fielof F is then defined by

T= Za(Ei, E;), (2.4)
where{E;};—1,... , is an orthonormal basis @f. The dual forme, themean curvature form
for L, is then given by

k(X)=go(r,X) forX elQ. (2.5)

The foliation F is said to beminimal (or harmoniq if x = 0. Throughout this paper, we
also use the notationinstead of the mean curvature vector
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Let 25 (F) be the space of abiasicr-forms i.e.,
B(F) = {¢p € 2"(M)]i(X)¢ =0,0(X)¢ =0,for X e I'L}.

The foliationFis said to beésoparametridf « € .Qé (F). We already know thatis closed,
i.e., ¢ = 0 if Fis isoparametri¢16]. Since the exterior derivative preserves the basic
forms (thatisg(X) d¢ = 0 andi(X) d¢ = 0 for¢ € £25(F)), the restrictionig = d|gg(f)

is well defined. Lebg the adjoint operator afg. Then it is well-knowr[1,8] that

dg =Y 04 AV,  d8=—Y i(E)VE, +ilks), (2.6)

a
wherexg is the basic component af {E,} is a local orthonormal basic frame @ and

{64} its gp-dual 1-form.
Thebasic Laplaciaracting ong2j (F) is defined by

Ag = dgdp + Sgdp. (2.7)

If Fisthe foliation by points oM, the basic Laplacian is the ordinary Laplacian. In the more
general case, the basic Laplacian and its spectrum provide information about the transverse
geometry oflM, F) [15].

3. Transversal Dirac operators of transversally conformally related metrics

Let (M, gu, F) be a compact Riemannian manifold with a transverse spin foligioh
codimensiory and a bundle-like metrig,, with respect taF. Let Pso(F) be the principal
bundle of (oriented) transverse orthonormal framings. Then the transverse spin structure
is a principal Spilig)-bundle Pspin(F) associated with it which is a fiberwise non-trivial
double covering oPso(F). Let S(F) be the foliated spinor bund[8,8,10]associated with
Pspin(F). Then the transversal Dirac operafoy is locally defined?2,5] by

1
DyW = ZEa Vg W = Sk W forw e I'S(F), (3.1)

a

where{E,} is a local orthonormal basic frame ¢f. We define the subspadé (S(F)) of
basicor holonomy invariansections ofS(F) by

IB(S(F)) = {W € I'S(F)|VxW = 0forX e I'L}.

Trivially, we see thaDy, leavesl g (S(F)) invariant if and only if the foliationF is isopara-
metric, i.e.x € Qé(}‘). Let Dy = Dylrg(scry - IB(S(F)) — I's(S(F)). This operator
Dy, is called thebasic Dirac operatoron (smooth) basic sections. On an isoparametric
transverse spin foliatioff with éx = 0, it is well-known[2,5,8] that

DiW = VivVyW + 1KYy (3.2)
wherekY = oV + [«|? and

VaVeW == Vi p W+ VW (3.3)

a
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The operatoW;; Vi is non-negative and formally self-adjo{®]. We now define a canonical
sectionRY of Hom(S(F), S(F)) by the formula

RY(W) =) Eq-Ep- RS(Eq, Ep)¥, (3.4)

a<b

where the curvature transforR¥ on S(F) is given[11] as

1
RS(X, V)W = 3 ZgQ(RV(X, Y)E., Ep)Eq - Ep-¥ forX,Y € I'TM. (3.5)
a,b

Lemma3.1(Jung8]). Onthe foliated spinor bundIg&(F), we have the following equations
RY =15V, (3.6)

> Ei- RS(X, E)W = —%pV(X) ¥ forX e Io. (3.7)
a

Now, we consider, for any real basic functieon M, the transversally conformal metric
go = e2“gQ. Let Pso(F) be the principal bundle @, -orthogonal frames. Locally, the sec-
tions of Pso(F) corresponding asection= (E, ... , Ey) Of Pso(F)is5 = (E1, ... , Ey),
whereE, = e “E,(a = 1,...,q). This isometry will be denoted b¥,. Thanks to the
isomorphismy,, one can define a transverse spin struc%(]—“) on Fin such away that
the diagram commutes.

PolF) — Py(F)

Let S(F) be t_he foliated spinor bundles associated vﬁgbin(}'). For any sectionw of
S(F), we write = [, . If (, ),, and(, )z, denote, respectively, the natural Hermitian

metrics onS(F) andS(F), then for any®, ¥ € I'S(F)
(@, W), = (@, W)y, (3.8)

and the Clifford multiplication inS(F) is given by
X¥=X-¥ forXelQ. (3.9)

Let V be the metric and torsion free connection correspondingytoThen we have for
X, Y eI'TM,

Vxa(Y) = Vxr(¥) + X @)r(Y) + Yu)n(X) — go(w(X), n(V) grady (u),  (3.10)

where grag (v) = Y, E.(u) E, is atransversal gradient efandX («) is the Lie derivative
of the functionu in the direction ofX. The formula(3.10)follows from thatV is the metric
and torsion free connection with respecgip.

From(3.10), we have the following proposition.
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Proposition 3.2. The connectiolV andV acting respectively on the sections%fF) and
S(F), are related for any vector fieldX and any spinor fieldr by

VxW¥ = Vx¥ — 37(X) - grady (u) - ¥ — 3go(grady (u), 7(X))¥. (3.11)

Proof. Let{E,} be an orthonormal basis ¢f and denote by andw, the connection forms
corresponding tgo andgg. That is, for any vector fiel& € TM,

VxEb=)_ obe(m(X)E.,  VxEp=)_ dpc(r(X))E,. (3.12)
From(3.10) we have

@pc((X)) = wpe((X)) + 8o (M(X), Ec) En(u) — g0 (m(X), Ep) Ec(1). (3.13)
Let {¥4}(A = 1,...,24/2) be a local frame field of(F). Then the spinor covariant
derivative of@, is given[11] by

1
Vx¥a =3 hzwa(n(X))Eb - Ec-Wy. (3.14)
<c

With respect tgg o, we have

_ 1 _ -
VxWa =3 ) doe(r(X) By ey
b<c

1 -
=5 Z{wbc(ﬂ(x)) + 8o (m(X), Ec) Ep(u) — go((X), Ep) Ec(u)}Ep-Ec-¥a

b<c

1 o
=Vx¥a — 5 ) 20(n(X), E) Ep() EEy¥a
b#c

1 1 _
= Vx ¥y — 57(X) - grady () - ¥ — 580(grady ). w(X)) ¥ O

Let Dy be the transversal Dirac operator associated with the mggrie- e go and
acting on the sections of the foliated spinor bunsiieF). Let {E,} be a local frame of
Pso(F) and{E,} a local frame ofPso(F). Locally, Dy is expressed by

_ - - - - 1 _-
Dy¥ = Xa: E;Vp ¥ = Sig¥, (3.15)

wherex; is the mean curvature form associated v@igh which satisfies; = e~2‘«. Using
(3.11) we have that for any,

Dy¥ = e (D + 3(¢ — D grady (u) - ¥). (3.16)
Now, for any functionf, we haveDy ( f¥) = grad, (f) - ¥ + fDy¥. Hence we have

Dy(f¥) =e"grad, (/) - ¥ + fDy¥. (3.17)
From(3.16) and (3.17)we have the following proposition.
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Proposition 3.3. Let F be the transverse spin foliation of codimensipiThen the trans-
verse Dirac operatordy, and Dy, satisfy

Dy (e @D/ gy — o (@+D/2u g (3.18)

for any spinor field € S(F).

From Proposition 3.3if Dy¥ = 0, thenDy® = 0, whered = e (@~D/duy gnd
conversely. So we have the following corollary.

Corollary 3.4. Onthe transverse spin foliatigR, the dimension of the space of the foliated
harmonic spinors is a transversally conformal invariant

Let the mean curvature formof F be basic-harmonic, i.ex, € Qé(}') andégk = 0.
Then by direct calculation, we have the Lichnerowicz type formula

DAV = ViV ¥ + RY (@) + KV, (3.19)
where
VaVuW == Vi Vi ¥+ Vy o, 5,9+ Vi . (3.20)
a
KY = 3(q — 2xz(u) + 51&I2, (3.21)
RYW) =Y E,-Ep- RS(Ea. En)¥. (3.22)
a<b

Lemma3.5. Let(M, gy, F) be a compact Riemannian manifold with a foliatiérand a
bundle-like metrig,; with respect taF. Then

{(VaVeW, D)z, = ((VuW, Ve D))z,
forall @, ¥ € S(F), where(Ve ¥, Vi ®)z, = 3 (Vi ¥, Vi, Pz,

Proof. Fix x € M and choose an orthonormal basic frapig} such that VE,), = 0 for
all a. Then we have that at

Vi, Eb = € #{Ep(u)Eq — Sapgrady (u)}. (3.23)

Hence we have

(ViVuW, @)z, = — Z(@Eﬁ,—;ﬂ@, P)g, + (L —q)e

X <Vgradv(u)'1’a (p)gg + (VKglllf 4_5>§Q
—-_ ZanEafp, P)g, + Z(@Ea@ Vi, ®P)go + (L—q)e
a a
X<§gradv(u)lp é)' + (6@‘1}, @gQ
= —dive (V) +Z Vi, W, Vi ®)gp + (Vi ¥, Dz,
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whereV € I'Q ® C are defined b o (V, 2) = (V¥ ®)3, forall Z € I'Q. The last line
is proved as follows: at € M,

divg(V) =Y "20(Vg, V. Ea) =Y Eago(V. Ea) — g0 (v, > Vi, Ea)
a a a
=Y Ea(Vg,¥. ®)z, — (1— ) € *(Vgrad, (¥ P)zo-
a
By Green’s theorem on the foliated Riemannian manifaid

/divﬁ(V)vng gQ(Kg,V)U§='/ (Vi ¥, @)z, v3.
M M M

wherevs is the volume form associated to the mefig = g + go. By integrating, we
obtain our result. O

4. Eigenvalue estimate of the basic Dirac operator

Let (M, gy, F) be a Riemannian manifold with a transversally oriented Riemannian spin
foliation F of codimensiory > 2. Let gy, be the bundle-like metric for which the mean
curvaturec is basic-harmonic, i.eg € .Qé(]—‘) andégk = 0.

o
Now, we introduce a new connectidhon S(F) as
o _
V¥ = Vx¥ + fa(X)"¥ forX e TM, (4.1)

where f is a real-valued basic function dd andz : TM — Q. Trivially, this connection
f
V is a metric connection.

Lemma4.1. On the foliated spinor bundIg(F), we have
ff ! !

(VaVaW, )z, = ((VeW, Ve d))g

Q
I o _r
forall & & € I'S(F), where(Vy ¥, Vi )z, = Za(anlP, Vi Pzo-
Proof. The proof is similar to the one ihemma 3.5 O
On the other hand, by using.20), (3.23) and (4.1)ve have
S I - -
ViV = ViV W — 2f DyW + qfPW — e " grady (/) - ¥. (4.2)

From(3.19) we have

ViVyW = D2V — 2f DyW — RV (¥) +qP¥@ — KV¥ —e “grad, (/) - ¥, (4.3)
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wherekV = 1/2){(q — 2)kz(u) + (1/2)|k|2}. By integrating(4.3), we have
L 2 223 2 030 Voin d
/ IVeW|3, = /(Dtrw, W)z — 2/ f{DeW, W)z — /(R @), ¥)g,
- & - o, - [ &Rk g, (4.4)
Let Dp® = AP (P # 0). FromProposition 3.3we have
Dy = re "y, (4.5)

where¥ = e (@-D/2ugp FromLemma 3.1 we haveR" = (1/4)0", whereoV is the
transversal scalar curvature of the mefgig = €®go. Note that for allX € I'Q and
W e I'S(F), (X-¥, W), is purely imaginary8]. Hence(grad; (/) - ¥, ¥);, is purely
imaginary. Hence we have

/o 1o < _
/ |vtrl1/|§Q = f (AZ e _2fHe" — Zav - KV + qu) |W|§Q. (4.6)
If we put f = (A/g) €, then we have
f|ét P2 = q;l/e—ZH w2 9 _ugV) g2 (4.7)
e g 4q-1 ") R '

Wherer = oV + 4KV . Hence we have the following theorem.

Theorem 4.2. Let(M, gy, F) be a compact Riemannian manifold with a transverse spin
foliation F of codimensiory > 2 and bundle-like metrig,, such thatx e Qé(}') and

8k = 0. Assume thaky > 0 for some transversally conformal metig = €*go. Then

we have

2 q : u -V
22> 4(q_1)stjp|%f (€KY). (4.8)

The transversal Ricci curvatup’ of g0 = €%go and the transversal scalar curvature

oV of go are related to the transversal Ricci curvatpteof go and the transversal scalar
curvaturesV of g by the following lemma.

Lemma4.3. On a Riemannian foliatiodF, we have that for any € Q,

e p¥(X) = p" (X) + (2 q)Vx grady (u) + (2 — g)|grady (u) X
+ (g — 29X (u) grady (u) + {Apu — k(u)}X, (4.9)

6V =0V + (¢ — D2~ g)lgrady ()| + 2(q — D{Apu — k(). (4.10)

From(4.10) we have

KY =6V +|kl? +2(qg — 1) Apu + (g — 1)(2 — g)lgrady (u)[> — 2«(u).  (4.11)
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On the other hand, fay > 3, if we choose the positive functiognby u = 2/(q — 2) In h,
then we have

2
Agu = —Z{h_2|gradv(h)|2 +h~tAgh}, (4.12)
q—
2 2 \? 2 2
|grady (u)|© = <qT2) h=<|grady (h)|“. (4.13)
Hence we have
- - 4
kY = n WD Y = plygh + )2 — _Zh_lK(h)’ (4.14)
q-—
where
-1
Yo=41"ZAg+0Y, (4.15)
q—2

which is called @asic Yamabe operataf F.
Now we putiC, = {u € 29(F)|x(u) = 0}. If we choose: € Ky, thenk(h) = 0 = x(u).
From(4.11) and (4.14)we have

kY = KY + 2(q — 1) Apu = h™2¥ph + [¢2, (4.16)
wherekY = oV + |«|%. Hence we have the following corollary.

Corollary 4.4. Let(M, gy, F) be a compact Riemannian manifold with a transverse spin
foliation F and bundle-like metrig,, such thatx € Qé(]—‘) and ék = 0. Assume that
KY > 0.Then

B =TSR N (K 420 = D Agu + (g = Dig = Digrady ) ifg =2,

_ 9
4q-1)

A2 >
SUR,exe, INfur{h ™ Yoh + []?) if g > 3.

(4.17)

Assume that the transversal scalar curvattYfeis non-negative. Then the eigenvaluge
associated to the first eigenvalue of Y, can be chosen to be positive and thenis
non-negative. Thus

hy Yoh1 = pa. (4.18)

Since supinfh~1¥ph} > 1, we have the following corollary.

Corollary 4.5. Let(M, gy, F) be a compact Riemannian manifold with a transverse spin
foliation F of codimensioy > 3 and bundle-like metrig,; with « € Qé(]—') andéx = 0.
If the transversal scalar curvature satisfie¥ > 0, then we have

2> 4

“4@-1

(111 + inf [x]?). (4.19)
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Remark. Sinceus > infoV, the inequality(4.19)is a sharper estimate than the previous
one(1.2). Moreover,Corollary 4.5is a specialization of the result on an ordinary manifold
by Hijazi [6] to the case of Riemannian foliations.

5. Thelimiting case

In this section, we study the foliated Riemannian manifldvhich admits a non-zero
foliated spinon; such thatDpW; = A1¥1 with A2 = (1/4)(g/(g — 1)) (u1 + inf|«|2). We

define Rid, : I'Q ® S(F) — S(F) by

Ric, (X ®¥) = > Eq- R/ (X, E)¥ (5.1)

f
whereR/ is the curvature tensor with respecttadefined byV,’;lI/ = Vx¥ + fa(X) - ¥.
By long calculation, forX € I'Q and¥ € I'S(F) we have8]

RicL(X @ W) = —1p"(X) - ¥ +2(g — D f2X - ¥ — gX(H¥ — grady (/) - X - ¥
(5.2)

for X € Q. Similarly, we obtain the formula for RQXX@ ¥) associated t6(F). Namely,
Ric, (X ® &) = —3p" (X)W + 2(q — 1) f2X0 — qX(H¥ — grady ()X, (5.3)
wherep?(x ) is the transversal Ricci curvature with respecvtderom(5.2) and (5.3)we

have the following facts.

! _
Proposition 5.1. If M admits a hon-zero foliated spingrwith V¥ = 0,thenf is constant
and for anyX € TM

VxW = —f€n(X) - ¥ + 37(X) - gracy (u) - ¥ + 3go(grady (w), 7 (X% (5.4)
Proof. From(5.3), it follows that f is constant (sef8]). Next, we have frong4.1)
Vx¥ + fr(X) - & =0 foranyX e TM.

Hence from(3.11) we have

Vx¥ — 37(X) - grady (u) - ¥ — 3go(grady (u), i(X)¥ + f €7(X) - ¥ = 0.
Sincel, is an isometry, we have
VxW — $m(X) - grady (u) - ¥ — 3go(grady (u), "(X)¥ + f€'n(X) - ¥ = 0.

This complete our proof. O
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We now consider the limiting case. et = (1/4)(q/(g — 1)) (11 +inf|«|?). From(4.7),
we have

. A
Ve =0 with f="2e™  py+inflcl? = h ¥ph + [« (5.5)
q

By Proposition 5.1we know thatf = (A1/g) € is constant. Sa is constant. Fron(s.4),
!

¥ is a transversal Killing spinor, i.eYy¥ = 0. Also, we have frong5.3)
oV (X) = Mg — 1) f2X forX e I'Q. (5.6)

Sinceu is constant, we have froi@.9)

4q—-1

oV (X) = = A2X. (5.7)

If we comparg5.7)with (2.2), thenFis transversally Einsteinian with a constant transversal
scalar curvatureV = (4(q — 1) /q)ki. Sinceu is constantf is constant. Hence the second
equation in(5.5)with o¥ = (4(g — 1)/¢)A% implies that

oV =ov + |/<|2.

Hencelx| = 0. SoF is minimal. Summing up, we have the following theorem.

Theorem 5.2. Let(M, gy, F) be a compact Riemannian manifold with a transverse spin
foliation F of codimensiory > 3 and bundle-like metrig,, such thatx e _Qé(}") and

sk = 0. Assume thatY > 0. If there exists an eigenspinor fielth of the basic Dirac
operator Dy, for the eigenvalue.? = (q/4(q — 1)) (111 + inf|«|?), thenvr is a transversal
Killing spinor andFis minimal transversally Einsteinian with positive constant transversal
scalar curvaturesV.

Letw € £25(F) be the basie-form and¥ e I's(S(F)) a foliated spinor field. Then we
have from(2.6),

1 .
Dp(w - W) = (d5w+85w)-l1/+ZEa~w~VEad/— §K~a)~llf—l(/c)a)~llf, (5.8)
a
where{E,} is an orthonormal basis @. FromProposition 5.1we have
A
Vil = —2r(X) - v (5.9)
q

Moreover, for any basie-form w € £25(F), we have, by direct calculation,

Y Ei o E.= (-1 - 0. (5.10)
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From(5.4), (5.9) and (5.1Q0we have

g=20h

1
Dp(w - ¥) = (dgw + Sgw) - ¥ + (—=1)" wolll—élc-a)-llf—i(/()a)-llf.

(5.11)

Hence we have the following theorem.

Theorem 5.3 (cf. Hijazi [6]). Let(M, gy, F) be a Riemannian manifold with a transverse
spin foliation F of codimensiory > 3 and a bundle-like metrig,, such thatc Qé(]-‘)
and sk = 0. Assume thasV > 0. If there exists¥ such thatDp¥ = A1 with A2 =
(q/4(qg — 1))(u1 + inf|x|2), then there are no non-trivial parallel basieforms(r # 0, ¢)
onM.

Proof. By Theorem 5.2F is minimal. Hence we have

q—2r
Dp(w - ¥) = (dpw + Spw)¥ + (1)

Mw - W
Assume that any basicform w e £25(F) is parallel. Thenlgw = dgw = 0. Hence we
have

Do(w-9) = (-1 1=

Mw - W

Sow - ¥ is a eigenspinor with eigenvalue-1)"((g — 2r)/q)A1. If r # 0 andg, then its
absolute value less thgt;|. This is contradiction. So we have

w-¥=0. (5.12)
It follows by differentiation

w-e, ¥ =0. (5.13)
On the other hand, we know that for any 1-fofrandr-form w,

w-0=(=1)"{0 o+ 2"}, (5.14)
where¢* is agp-dual vector of. From(5.12)—(5.14)we have

ileg)w- ¥ =0.
After new differentiation, we get

w(eay,---,€q)¥ =0 (5.15)

which impliesw = 0. This completes our proof. O

If Fis minimal, then any parallel basic forms are harmonic. Hence we have the following
corollary.
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Coroallary 5.4. Under the same condition as itheorem 5.3if there exists¥ such that
Dp¥ = AW with A2 = (¢/4(g — 1))(1 + inf|«|?), then there are no non-trivial basic
harmonicr-forms(r # 0, g) on M.

Now, we recall the generalized Lichnerowicz—Obata theorem by Lee and Richardson for
foliations[12].

Definition 5.5. LetG be a discrete group. Théefis transversally isometrito the isometric
action ofG on a Riemannian manifoltyl if there exists a smooth, surjectve map M — N
such that:

1. The functiong induces a homeomorphism between the leaf spaCE and the orbit
spaceN/G.

2. For eachx € M, the push forwara, restricts to an isometry, : O, — Ty N, where
Q is the normal bundle of the foliation afidN is the tangent bundle a¥.

Theorem 5.6 (Lee and Richardson’gl2] generalized Lichnerowicz theoreml)et F be

a codimensiory Riemannian foliation on a closedonnected Riemannian manifoM.
Suppose that there exists a positive constastich that the transversal Ricci curvature
satisfieso¥ (X) > ¢(q — 1) X for everyX € Q. Then the smallest non-zero eigenvalige
of the basic Laplaciamp satisfies

AR > CQ.

Theorem 5.7 (Lee and Richardsonfd 2] generalized Obata theoremJhe equality holds
in Theorem 5.6f and only if

1. Fis transversally isometric to the action of a discrete subgroup(@h acting on they
sphere of constant curvatuee Thus there are at least two closed leavilse pole.

2. If we choose the metric oM so that the mean curvature form is basic, then the mean
curvature of the foliation is zero

3. Each level set of theg eigenfunction is the set of leaves corresponding to a latitude of
theg sphere and the volumé/(r) of this level set is the volume of the maximum leaf
times the volume of the latitude

For the classification of real Clifford algebra@) of R", we have the following propo-
sition.

Proposition 5.8 (Lawson and Michelsohfi1]). For 1 < n < 8,the Clifford algebraCl(n)
and the dimensiod, of an irreducibleR-module forCl(rn) are given by the following

Cl)=C, ClI2=H, CI3ZH®H, Cl(4=H®2), CI5 =C@),
CI(6) =R(8), CI(7)=R(@B)®R(@B), CI(8) =R(16), d1=2
do=4, d3=4, di=8, ds=8, ds=8, d;=8, dg=16

whereK (n) denote the algebra of x n-matries with entries irk = R, C or H.
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Forn > 8,i.e,n =m + 8k(m, k > 1), dprgx = 2%d,,.
FromTheorem 5.7andProposition 5.8we have the following theorem (dfz]).

Theorem 5.9. Let (M, gy, F) be a Riemannian manifold with a transverse spin foliation
F of codimensiog = 3, 4, 7, 8and a bundle-like metrig,, with« € Qé(]—'). Assume that
the mean curvature of F satisfiessk = 0 ando" > 0. If there exists an eigenspinor field
¥y for A1 with A2 = (¢/4(g — 1))(u1 + inf|«|?), then

(1) Fis minimal transversally Einsteinian
(2) Fis transversally isometric to the action of discrete subgrou@@f) acting on the
g-spherewhereq = 3,4, 7, 8.

Proof. (1) is trivial from Theorem 5.2Next, we prove (2). Sinc& is minimal, from(5.6)
we have thap¥ (X) = (1/g)u1X. Let ¥ and® be the foliated spinors witlp¥ = 11 ¥
andDp® = —A1®. From(5.9), we have the following equations. For aklye I'Q

A Al

VW =—"2X .0 Vyd="X-0. (5.16)
q q

If we put f = (¥ @), then by direct calculation, we have

M1
-1

Af ="k (5.17)

It is sufficient to prove thay does not vanish identically.

(1) Incase = 4, 8, itis well known[11] that the real spinor bundi{F) splits as the two
irreducible real representations:

S(F)=ST(F) @ S (F). (5.18)

Then¥ = ¢t + ¥~ and® = ¥+ — ¢—, where¥* ¢ ST(F). Hence we have that
foranyX e I'Q,
4)
X(f) = —2(x vt w0, (5.19)
q
where(, ) = Re(, ). Let us definethe map : Q0 — S (F) by X — X .vt.
ThenF is theR-linear and injective. Sincé; = 8 anddg = 16 fromProposition 5.8
dimg QO = dimr S~ (F). HenceF is isomorphism and there exists# 0 such that

(X-w* y7)#0, (5.20)

which implies thatf = 0.

(2) Incaseg = 3,7, if we defineF : Q — S(F) by X — X - ¥, thenF is R-linear
and injective. Sincels = 4 andd; = 8 in Proposition 5.8dimg Q0 = dimr F(Q) =
dimp S(F)—1.Since(¥ X-¥) = 0, F(X) ¢ E,,(Dp), whereE,, (Dy) is the eigenspace
corresponding to the eigenvalug. Hence dimE;, (Dp) = 1 andF(Q) = EM(Db)i.



S.D. Jung et al./ Journal of Geometry and Physics 51 (2004) 166-182 181

SoF:Q — EM(Db)l is an isomorphism. Sinc@ € F(Q), there existsX # 0 such
that

—2X1

X(f)= —2(X-%®) #0, (5.21)

which implies thatf = 0. O

Theorem 5.10. Let(M, gy, F) be a Riemannian manifold with a transverse spin foliation
F of codimensio = 5 (resp, ¢ = 6) and a bundle-like metrig,,;. Assume that the mean
curvaturex of F satisfiessc = 0 ando" > 0. If the dimension of the eigenspinor space of
A1 With A2 = (g/4(q — 1)) (1 + inf|«|?) is 3 (resp, 2), then

(1) Fis minimal transversally Einsteinian
(2) Fis transversally isometric to the action of discrete subgrou@) (resp, O(6))
acting on thes- (resp, 6-)sphere

Proof. The proof is similar to the one of (2) itheorem 5.9 O
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